The Programme Committee of NAC 2021 is tasked with compiling a broadly appealing programme. Contributions will be scheduled as oral presentations that take place in parallel sessions spread over the two days of the congress. In addition there will be dedicated poster sessions each day, with ample time during the programme for visiting the posters.
Based on the keywords selected during submission of abstracts (see list below), the total number of abstracts and the topics submitted, the Programme Committee will arrange the abstracts into broader overarching parallel sessions. The themes of these parallel sessions will e.g. focus on specific or timely issues in the field of Earth Sciences, or they can aggregate contributions with a methodological or topical similarity. The committee will then decide if an abstract is accepted as an oral or poster presentation within one of those sessions. As the conference will be an interdisciplinary meeting ground for geoscientists, this procedure aims at encouraging researchers from all fields in Earth Sciences to connect, interact and present their progress of research.
You will have to register first. Please select the option ‘yes’ under ‘submit abstract’. You will receive a unique link by email after you have completed the registration process. This link can be used to login and submit your abstract. Abstracts (max. 250 words) can be submitted not later than Wednesday 27 January 2021, 23:59 h CET. Please note that the official language of the conference and for submitting abstracts and giving oral and poster presentations will be English.
The Programme Committee will define the themes of the parallel sessions and compile the conference programme based on the abstracts received before Wednesday 27 January 2021, 23:59 h CET. From all received abstracts, a selection of authors will be invited to give an oral presentation. By default, authors of the other abstracts will be offered the option of a poster presentation. In February 2021 the final program will be announced on the website and applicants will receive an invitation with instructions for preparing their online oral or poster presentations.
Oral presentations are scheduled in parallel sessions spread over the two days of the congress. Authors are allotted 15 minutes for their presentation, including time for questions and discussion. More details about the digital format for the presentations will follow upon selection.
At the NAC you will have an excellent opportunity to practise your academic skills, such as giving poster presentations and poster pitches.
Your poster will be visible in an online format. More details about the digital format for the presentations will follow upon selection. This year we will ask you to submit your poster prior to the conference. We want to receive a colour image formatted as .jpg or .png with a maximum of 10Mb, the orientation must be portrait. A poster prize will be awarded to the three best posters made by early-career scientists.
We welcome contributions from all branches of the Earth Sciences. Abstracts can be submitted using one or two the following keywords:
Atmospheric sciences extends from the large-scale dynamical/meteorological processes and systems in the atmosphere to the smaller scales of turbulent mixing, both in time frames that span from centuries (e.g. related to climate research) to shorter scales of seconds. Covered under this keyword are contributions that e.g. focus on studies of atmosphere composition, aerosol and cloud physics, in-situ or laboratory studies of gas-particles interactions and chemical reaction kinetics and large-scale infrastructure.
Biogeosciences covers biosphere-geosphere interactions in the present, past and in the future, biogeochemical cycles and research at the interface of (micro)biology and earth sciences. It integrates biological, chemical, and physical and its focus goes beyond the established scientific approaches embracing multi- and interdisciplinary understandings of bio-geosphere functioning in space and time. Experimental, conceptual, and modelling approaches are welcomed and the development and calibration of proxies and their use to reconstruct palaeoenvironments.
Research pertaining to the Boussinesq Center for Hydrology, the Dutch and Belgian scientific hydrology centre. The objective of the Boussinesq Center is to strengthen hydrological research in The Netherlands and Belgium, and to create favorable conditions for an efficient multi-disciplinary research environment. The Boussinesq Center yearly organizes the spring – early summer meeting, especially aimed for the young and mid-carreer scientists. Additionally, the Boussinesq Center awards every three years the Boussinesq Award for an excellent researcher in the field of Hydrology, and provides support.
The dynamics of currents, wave and tides in interaction with coastal sediment, bathymetry and morphology create intricating ever changing landscapes. Humans in the modern situation tend to make heavy use off these coastal systems, especially in places such as The Netherlands. This key word covers studies of the morphodynamic of shelf seas, beach coasts, tidal inlets and deltaic river channels – combining field data and numeric modelling with the occasional flume experiment and so on. It also covers studies of human design, engineering, forms of nourishment. It also covers bio-sedimentary and ecological aspects of the dynamics of these coastal systems in natural and in human-interfered situations.
The cryosphere are those parts of the Earth that are subject to prolonged periods of temperatures below the freezing point of water. These include glaciers, frozen ground, sea ice, snow and ice. Research topics can focus solely on the cryosphere (e.g. land/sea ice mass balance), or on interactions with other components of the climate system, both addressing theory, observation and modelling.
Understanding of the past evolution and current thermal, dynamical and chemical state of the Earth's deep interior and of the effect that the interior has on the structures and processes observed at the surface of the Earth. The 'deep interior' is generally considered to be the core and lower mantle, but interest may extend to the surface, for example, in the study of mantle plumes or dynamics of descending lithospheric slabs. This keyword serves to tag conference contributions more explicitly in which the deep interior of planet Earth is addressed.
Earth scientific studies increasingly benefit from the accessibility and use of Earth observation satellite data, (often commercial) small-sat constellations and the increasing capabilities of drones and. Exchange information on the use of Earth and aerial observation and share the best practices and available tools for Earth science applications, including upcoming BigData/BigScience issues.
Next to the general trends that are currently affecting the teaching and learning environment for Earth Scientists, for example, in the way humanity is exploring and exploiting our planet, or changes in the labour market asking for a new type of professional, the COVID-19 pandemic has a major impact on the way students and PhDs are educated. This impact is especially vast for students who depend in their studies on fieldwork and laboratory work, such as the case in Earth Sciences. Abstracts covered under this theme respond to such impactful changes that (may) result in enhanced, online teaching and learning activities. Topics on this subject may include, but are not restricted to, best practices, innovative ideas, and suggestions for future improvements in tertiary education.
The safe, efficient and cost-effective use of the subsurface in environmentally sustainable ways for the exploration and exploitation of natural resources and the construction of transport and storage infrastructures requires a thorough knowledge of the geological and geophysical heterogeneity. Covered by this keyword are contributions on case studies and innovative approaches to construct static earth models based on, e.g., process-based numerical forward modelling, seismic, well logs and core studies, and hybrid outcrop – stochastic – laboratory studies as well as dynamic models simulating processes in and around natural resource exploitation as well as underground infrastructure facilities. In addition, studies specifically focussed on sedimentary basins as hosts of important natural resources like coal, gas, oil, ore deposits, groundwater and geothermics are welcomed. This keyword also matches well to studies embedded in the recent KEM and DeepNL research programs.
These keywords cover studies that are fundamental to the study of the solid Earth. Topics can include studies related to the Earth’s mantle; oceanic and continental crust; the formation and crystallisation of magmas; the chemical compositions of igneous, metamorphic and sedimentary rocks; studies of volcanoes and various types of volcanism. While mostly fundamental in nature, applied topics include pollution of the atmosphere, surface or subsurface waters, the formation of ore deposits, and environmental impacts of volcanism (both subaerial, submarine as subglacial).
This keyword covers all aspects and methods that focus on determining the timing of events and processes as well as their rates in the geological record. Methodological development studies of dating techniques, as well as studies applying and integrating techniques to reduce chronometric uncertainties, or studies on standardization or studies comparing different dating methods are covered by this keyword.
The fields of Geodynamics, Geophysics and Geodesy together cover many aspects of studying the Earth’s surface, lithosphere, mantle, and core. This encompasses observations, imaging, theory, numerical modelling (simulations) and laboratory modelling (experiments), over shorter and longer timescales, involving rheological, seismic, paleomagnetic and gravitational aspects. At the surface, this affects. sea-level rise, the tides, changing ice masses and global water circulation. Observing and measuring at the Earth’s surface and shallow lithosphere, provides insight into spatial and temporal patterns of geophysical processes and deformations also in the deeper parts of the earth. Topics therefore span from measurement systems to the actual investigation of geophysical processes.
Geomorphology is the study of land-surface features and the dynamic processes that shape them. At the heart of geomorphology is the understanding landform history and dynamics, and predicting future changes through a combination of field observations, physical experiments, and numerical modelling. Research focussed on processes that ‘build topography’ as a result of the interplay between the effects of tectonic forces and processes that modify the terrain, such as weathering, erosion through running water, waves, glacial ice, wind and gravitational forces. This also includes human influences on geomorphological processes and the societal application of geomorphological research.
Developments in instrumentation, technology, methods and data handling used in any field of the geosciences, aiming to advance instrumentation and data systems and to share experiences and approaches with other subject areas.
Monitoring, modelling and prediction are basic issues in hydrology and geohydrology. Research is focussed on quantitative and qualitative aspects of fresh and saline groundwater and surface water systems, their dynamics and their interrelationships with the surrounding geology and ecosystems. This includes interactions between hydrology and geomorphology (e.g., erosion, sedimentation, groundwater systems), the relationships between hydrology and soils or sedimentary reservoirs, as well as the interaction between the hydrosphere and the biosphere (e.g., ecohydrology, wetlands). This may also include research into the management and operation of water resources by societies in various parts of the world, reservoir engineering, civil engineering, soil sciences en environmental sciences.
Research pertaining to the International Ocean Discovery Program (IODP), an international marine research collaboration dedicated to advancing scientific understanding of the Earth through drilling, coring, and monitoring the subseafloor, and the International Continental Scientific Drilling Program (ICDP), a multinational program to further and fund geosciences in the field of Continental Scientific Drilling.
This includes the geological and geophysical processes that can be hazardous and can produce damage to the environment and to the society. Underlying aims can be improving the understanding of the evolution of the processes or discuss new technologies, methods and strategies to mitigate their disastrous effects. Specific hazards include: hydro-meteorological processes, volcanism, landslides, earthquakes, sea and ocean, snow-avalanche and glacial and wildfires. In addition social aspects of the before mentioned hazards can include studies addressing topics such as development sustainability, emergency, warning, and after-disaster resilience.
In this session we welcome any contributions on research performed within the Netherlands Earth System Science Center, an NWO Gravitation program funded by the Ministry of Education, Culture and Science. A selection of the contributions will be presented at a dedicated NESSC parallel session at the NAC, while the remaining contributions will be presented as posters on the NAC.
Nonlinearity is broadly found in all branches of the geosciences. Covered by this keyword are studies of, new methodologies, new modelling or new data analysis techniques related to nonlinear paradigms whose applications broadly applicable to various subdisciplines. This can include deterministic chaos, tipping points, nonlinear waves, similarity across scales, network theory, stochasticity, predictability and its limits, pattern formation, self-organised criticality, extreme events.
This keyword broadly covers the various ocean science disciplines on global, regional and local (e.g. Waddenzee) scales. Research topics can focus solely on the oceans (e.g. large-scale circulation, coastal oceanography, sea level change), or on interactions with other components of the climate system, both addressing theory, observation and modelling.
Excavation of ancient life and traces of human ancestry is intimately linked to earth sciences: the local circumstances trapping and preserving articulated fossil records and archaeological sites (taphonomy), the regional to global circumstances explaining evolutionary and cultural developments, the strategies of discovering and documenting find sites. The keyword is to cover bone-bed, cave-fill and lake-rim material studies (e.g. dinosaur excavation, hominin sites), as well as landscape-archaeological and multiproxy geoarchaeological work involving the modern human species in subrecent times in younger Pleistocene and Holocene palaeoenvironments.
Studies including the study of, any kind of, climate archive from rocks to ocean cores, speleothems, ice cores, chronicles, to instrumental records are welcomed. Besides observations, climate modelling on all time scales from the deep past to the future are areas covered under this interdisciplinary abstract keyword.
Recent advances in (Dutch) planetary geoscience are covered by this keyword and this includes geological, morphological, geophysical, astronomical and geochemical studies of planet- and moon interiors, surfaces, and atmospheres; and interdisciplinary contributions on the origins and the evolution of the solar system and exoplanetary systems. This covers an equally broad range of methodologies for studying these topics, such as ground-based observations or space mission exploration (i.e. remote sensing), numerical and analogue modelling, extra-terrestrial sample analysis, and terrestrial analogue (field) studies.
Research pertaining to the Ruisdael Observatory, a national initiative, a nationwide observatory for measurements of the atmosphere. It was set up to enable more concrete, detailed forecasts of the weather and air quality. The Ruisdael Observatory will be modelling the entire Dutch atmosphere with a high resolution of only 100 metres. In doing so, Dutch research is positioning itself on the front line of atmospheric science.
These topics centre on the development of static and dynamic geophysical models, conducting research that spans from acquisition parameters to petrophysical properties, theoretical and experimental aspects of rock physics, and supporting the transitions from geo-modelling to geo-technical application. We also invite studies that focus on the characterisation of earthquakes, seismoacoustic or infrasonic sources, as well as methods to simulate wave propagation. This keyword also matches well to studies embedded in the recent KEM and DeepNL research programs.
The Earth sciences play a crucial role in many of the grand challenges our society faces. As a society, we need the resources of the earth (water, space, minerals, energy resources), but making use of the resources also affects the environment we live in. These effects add to the effects of natural processes of the system Earth such as earthquakes, floods and hurricanes. This keyword covers Earth scientific research and engineering with an explicit aim to apply science for the benefit of society. Societal impact occurs on different spatial and temporal scales: from for instance how processes in the Earth impact an individual farmer to their impact at the global scale.
Soils form the interface between the Earth’s crust and atmosphere and are a basis for life on Earth. Soils foster biodiversity and record the interactions between lithosphere, biosphere, hydrosphere and atmosphere. This keyword broadly covers the soil sciences as linked to a wide range of scientific and societal issues such as food security, water availability and climate change. It encompasses both fundamental and applied research, including the use of soils for geo-engineering purposes.
A vast majority of the Earth’s surface is covered by sedimentary deposits, which are eroded and deposited and form a direct link between the lithosphere, atmosphere, biosphere and hydrosphere. The sedimentary archive of Earth history is studied with a wide range of analytical techniques providing details on the evolution of our planet. Focused on all aspects of the sedimentary record, this keyword covers studies that will provide a better understanding of the physical, chemical and biological processes controlling the formation and distribution of sediments and sedimentary rocks.
Contributions for this keyword investigate rock deformation at all scales with the aim to understand its complex relationships using natural observations, including mapping, remote sensing and seismic measurements, and experimental approaches.